
International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 4 Number 6 (2015) pp. 131-151 http://www.ijcmas.com

Original Research Article

Studies on the Loss of Biodiversity due to Parasitic Adaptation in Selected Fungi - An Overview

Nasrin Begum* and Sudhendu Mandal

UGC-DRS Department of Botany, Visva-Bharati, Santiniketan-731235, India

*Corresponding author

ABSTRACT

Fungi are eukaryotes which occur in nature as symbionts, saprophytes and parasites with their host on the basis of their mode of nutrition. The present study deals with the parasitic mode of adaptation of some selected members of fungi in different ecological conditions and their effect for the silent loss of biodiversity. Fungi show an wide range of host specificity from algae to human beings. Oomycetes and Chytrids occur mostly in marine ecosystems and parasitize on different algal host ranging from green algae to diatoms. The Zygomycetes fungi Piptocephalis virginiana is a mycoparasite of another zygomycetes fungi Choanephora cucurbitarum. Fungi parasitize on bryophytes, pteridophytes and gymnosperms in different ecological conditions. Angiosperms are the largest host of fungi. Beauveria bassiana is an entomopathogenic fungus but act as a host of a mycoparasitic fungus Syspastospora parasitica. Batrachochytrium dendrobatidis causing Chytridiomycosis of amphibians results in dramatic population decline of amphibian species. When fungi parasitize on human cause severe diseases like aspergillosis, candidiasis, coccidiomycetes, etc. About 15 species of Oomycota parasitize on algae and diatoms. Green alga Chaetomorpha media showed infection up to 5% by the fungus Pontisma lagenidioides. About 30% of amphibians of world is declined by the infection of *B. dendrobatidis* (Longcore et al., 1999). The major, chronic, invasive and allergic form of aspergillosis account for around 600,000 death annually worldwide (Denning et al., 2013). The mortality rate in human due to systemic candidiasis is 30-50%. From the observation it can be concluded that the studied group of fungi play an important role causing different diseases by their parasitic mode of adaptations following the silent loss of biodiversity.

Introduction

Keywords

Parasitic

adaptation,

loss, Fungi

Biodiversity

Parasitism is one of the most common adaptation among eukaryotes and the world wide distribution of fungal parasites with their remarkable evolved modification plays an important role in nature. There are approximately 100,000 described species of fungi (Kirk *et al.*, 2008), which only represent a fraction of its diversity,

estimated to be between 1.5 and 5 million species (Hawksworth and Rossman, 1997, Blackwell 2011). Importantly, one of the hallmarks of fungi is their propensity to form intimate interactions/associations with other groups of life on Earth (Vega and Blackwell, 2005). As per latest statistics in 2010 according to IUCN Red list which incorporates the global amphibians assessment and subsequent updates focuses that about 30% of amphibians of world is declined by the infection of B. dendrobatidis (Longcore et al., 1999). The major, chronic invasive and allergic form of Aspergillosis account for around 600,000 death annually worldwide (Denning et al., 2013). The mortality rate in human due to systemic candidiasis is 30-50% (Williams and Lewis, 2011). Our present research paper deals with the investigation of the pattern of adaptation different fungal parasites, of their infectivity, aggressivity and their gradual modification showing which the silent biodiversity loss. The nature of fungal parasites and their gradual evolution indicates their adaptability runs from simple to complex organism. It is seen under investigation that the selection of host and their morphogenetic coevolution are closely related. Infectivity, aggressively, dominance and choice of host are not occurred randomly, selection of all the things is momental and modification for their evolution runs forever.

Materials and Methods

Study of organisms and their populations

The parasitology of different fungus were studied and recorded. Approximately 45 different fungal populations among which 30 major are chosen for consideration on the basis of the IUCN and published recorded data for year wise infection rate. It has also been focused on the behavioral characteristics of different parasitic fungus according to their host range from lower algal group to complex human system. On the basis of our objective we are trying to record the estimation of biodiversity loss by some of the selective parasitic fungus.

Application of various statistical tools -We calculated the derived data into the following pattern of analysis-

DEP = Differential extinction Point (Considered as a hidden factor for biodiversity loss.)

(PDI -Parasitic domain incidence, RD -Risk difference, RR- Risk ratio, X- Previous year PDI, Z= Next year PDI, n₁-Previous year aggressive population, n_2 - Next year aggressive population, A- Aggressivity)

We are going through software analysis (plotting data on the respect of PDI, A, RD, DEP (as an unknown factor)) by using some statistical tools like Descriptive analysis, analysis, Ward linkage and Clusture Centroid linkage analysis between derived data, Cross correlation, Auto-correlation, Partial correlation, Frequency analysis, Proximities. Dendrogram analysis, Exploration of model and so on. The following mentioned analysis is necessary for tracing any link to biodiversity loss or extinction for future forecasting.

Establishment of proper 3d-diffractive model by software application

To make the 3D diffractive model for analysis of biodiversity loss and finding the correlation in between species richness (SR), Aggressivity index (AI), Parasitic domain incidence (PDI), Differential extinction point (DEP), so that we are going through ORIGIN 17.0 SOFTWARE and MICROORISIS (developed by Michigan university) modern software tools. We are plotting species richness in 0.1 to 1 scale of SINCLAIR, 1997. Establishment of model is necessary for real estimation of biodiversity loss.

Parasitic fungus and their host: Some selected parasitic fungus and their host ranging from the primitive algal groups to complex carnivorous level (Table 1.1).

According to SINCLAIR 0.9 SCALE we are distributing parasitic fungal density with the relative aggressivity to different host from 2005 to 2013 and the data is plotted in the following graph.

Results and Discussion

Year wise population of different parasitic fungus with their derived aggressivity is recorded and their PDI, RD, RR & A is calculated in following manner:

The following table shows the Correlation & Descriptive analysis between PDI and Aggressivity with Anova analysis

The Wilcoxon signed rank sum test is the non-parametric version of a paired samples t-test. We are using the Wilcoxon signed rank sum test for assuming the difference between the two variables i.e. either they are in interval or normally distributed (where the difference is ordinal). We will use the same example as above, but we will not that difference assume the between read and write is either in interval or normally distributed. Correlation is significant at the 0.01 level. The significant level between the two variables is 0.008.

In the above mentioned cases we are getting the valid cluster level is 9 and it is distributed in between 4 and 5 level in two clusters and mentioned here. At first we assumed that there is something missing or hidden data as DEP but our calculation indicates that all the including data are valid.

Ward's minimum variance criterion minimizes the total within the cluster variance. At each step the pair of clusters with minimum distance between the clusters is merged. To imply this method, at each step we find the pair of clusters that leads to minimum increase in total within the cluster variance after merging. This increase is a weighted squared distance between cluster centers. At the initial step, all clusters are in singletons (clusters containing a single point). To apply a recursive algorithm under this function, the initial distance between individual objects must be proportional to squared Euclidean distance.

In Centroid Linkage Clustering, a vector is assigned to each pseudo-item, and this vector is used to compute the distances between this pseudo-item and all remaining items or pseudo-items using the same similarity metric as were used to calculate the initial similarity matrix. The initial cluster distances in Ward's minimum variance method are therefore defined to be the squared Euclidean distance between points:

$$d_{ij} = d(\{X_i\}, \{X_j\}) = ||X_i - X_j||^2.$$

In all the upper nine cases we are analyzing by hierarchical cluster analysis and making dendrogram using centroid method and shows highest proximity (level 0 to 25) in case 3 and case 4. The minimum level of proximity is found in case 5. Zero to five level of proximity cluster is found in case of case 5, case 8, case 6, case 1, and case 2. Five to ten level of proximity cluster is found in case 7 and case 9.It is mentioned here that the highest proximity cluster shows correlation and the smallest closest proximity cluster shows distant correlation between two clusters. Cluster proximity analysis is important for measuring significance level between two consecutive data.

Here in the following table, we are considering two variables as VAR00001 as PDI and VAR00002 as Aggressivity, and connecting the two with cross correlation to find out the significance level.

considering VAR00001 as PDI and VAR00002 considered as aggressivity and create auto correlation, and partial correlation between the two. The Ljung-Box test (named for Greta M. Ljung and George E.P.Box) is a type of statistical test of whether any of a group of autocorrelations of a time series are different from zero. Instead of testing randomness at each distinct lag, it tests the "overall" randomness based on a number of lags, and is therefore a portmanteau test.

The Ljung–Box test can be defined as follows.

 H_0 : The data are independently distributed (i.e. the correlations in the population from which the sample is taken are 0, so that any observed correlations in the data result from randomness of the sampling process).

H_a: The data are not independently distributed

$$Q = n(n+2)\sum_{k=1}^{h} \frac{\hat{\rho}_{k}^{2}}{n-k}$$

where *n* is the sample size, \hat{P}_k is the sample autocorrelation at lag *k*, and *h* is the number of lags being tested. Under H_0 the statistic Q follows a $\chi^2(m)$. For significance level α , the critical_region for rejection of the hypothesis of randomness is –

$$Q > \chi^2_{1-\alpha,h}$$

In case of ANOVA analysis we are getting convergence. Convergence is due to small change or static in cluster centers. The maximum absolute coordinate changes for any centres are 0. The minimum distance between initial centres is 26.085.Box-Ljung shows that all the correlated data are positively significant. Partial autocorrelation reflects that in case of PDI and A, some data are positively significant and some are negatively correlated with A, so therefore we can assume that (A) is inversely proportional to PDI. In case of one sample correlation or paired sample correlation (with PDI and A) we are getting positively related data (where correlation is significant in 0.01 level). Non parametric correlation with Kendall's tau b and spearmann's rho shows a significant positive result. Wilcoxon signed ranked test gives the positive emphasis and shows sometimes VAR00002 > VAR00001 and sometimes VAR00002 < VAR00001 (where VAR00002 denoting А, VAR00001 denoting PDI), so we can clearly turn into the indication that (A), is an independent factor, correlation comes in different dome through phylogenetic evolved line. The 'F' tests should be used only for descriptive processes. Proximity analysis between RD and A, showing 100% valid data, and close cross linkage between the two (RD \square A). We are getting by this analysis 4 valid clusters. At a time we considered DEP as a hidden factor, now it is under valid cluster. So, therefore we are going through 3D

diffractive model and get some point of traces of DEP, which forecasts the silent

biodiversity loss.

Table.1 Parasitic fungus and their host: Some selected parasitic fungus and their host ranging from the primitive algal groups to complex carnivorous level

Name Of The Parasitic Fungus	Name Of The Host
PARASITIC FUNGUS	ALGAL HOST
Chytridium polysiphoniae	Centroceros clavulatum (Raghukumar 1987a&b)
Coenomyces sp.	Cladophora sp, Rhizoclonium sp (Raghukumar, 1994)
Ectrogella perforans	Lichmorpha sp (LI Wei et al., 2010)
Lindra thalasiae	Sargassum sp. (Sharma et al., 1994)
Labyrinthula sp.	Rhizoclonium (Raghukumar, 1994)
Olphidium rostriferum	Cladophora frascatti (Raghukumar 1986a, 1987a)
Olphidiopsis porphyrae	Bangia, Porphyra (LI Wei et al., 2010)
Pontisma lagenioides	Chaetomorpha media (Raghukumar, 1987a & b)
Petersenia pollagaster	Chondrus crispus. (LI Wei et al., 2010)
Pythium porphyrae	Porphyra sp. (LI Wei et al., 2010)
Schizochytrium	Thalassonema nitzchioides (Gaertner, 1979)
PARASITIC FUNGUS	FUNGAL HOST
Piptocephalis virginiana	<i>Choanephora cucurbitarum</i> (Manochaand Roya Golesorkhi, 1979)
Syspastospora parasitica	Beauveria bassiana (Humber et al 2004)
Verticillium biguttatum	Rhizoctonia solani (Van Den Boogert and Velvis, 1991)
PARASITIC FUNGUS	BRYOPHYTEAN HOST
Lamprospora carbonicola	Funaria hygrometrica (Benkert D. 1976)
Lamprospora miniata	Barbula convoluta (Benkert, 2009)
Neottiella albocincta	Atrichum undulatum (Benkert, 1987c)
Neottiella vivida	Polytrichum strictum (Benkert, 1995)
Octospora grimmiae	Grimmia pulvinata (Benkert, 2009)
Octospora humosa	Pogonatum aloides (Dobbeler & Itzerott, 1981)
Octospora ithacaensis	Marchantia polymorpha (Benkert, 2009)
Octospora leucoloma	Bryum argenteum (Benkert, 1998c)
Typhrocybe palustris	Sphagnum sp. (Peck, 1872)
PARASITIC FUNGUS	PTERODOPHYTEAN HOST
Mixia osmundae	Osmunda regalis, O. Cinnamomea (Kramer, 1958)
PARASITIC FUNGUS	GYMNOSPERMEAN HOST
Gymnosporium juniper-verginianae	Juniperus virginiana (Peterson, 1967)
PARASITIC FUNGUS	ANGIOSPERMIC HOST
Armillaria mellea	Forest and fruit trees (O'Reilly, 1963)
Albugo candida	Crucifers (Alexopoulosn et al., 1996)
Alternaria sp	Potato, Tomato (Rotem, 1994)
Cryphonectria parasitica	Chestnut tree (Roane et al., 1986)

Helminthosporium oryzae	Rice (Alexopoulosn et al., 1996)
Phytophthora infestans	Potato (Ingram and Williams, 1991)
Puccinia graminis	Wheat (Roelfs and Bushnell, 1985)
Polyporus sp	Woody trees (Alexopoulosn et al., 1996)
Ustilago sp	Corn, Wheat (Christensen, 1963; Joshi et al., 1983)
PARASITIC FUNGUS	INSECT HOST
Beauveria bassiana	Termites, White flies, Thrips, Aphids and Beetles (Bassi, 1835)
Ophiocordyceps unilateralis	Camporotus leonardi (Wallace, 1859)
PARASITIC FUNGUS	AMPHIBIAN HOST
Batrachochytrium dendrobatidis	Frogs (Longcore et al., 1999)
PARASITIC FUNGUS	HERBIVOROUS HOST
Pithomyces chartarum	Callttle, sheep, deer, goats etc (Di Menna et al., 2010)
PARASITIC FUNGUS	CARNIVOROUS HOST
Microsporum canis	Dogs and Cats
PARASITIC FUNGUS	HUMAN HOST
Aspergillus fumigatus	Bronchopulmonary of human(Jean Paul Latge,1999; Smith and Denning, 2011)
Aspergillus niger	Human ear (Vrabee et al., 2006)
Candida albicans	Oral and Gastrointestinal tract (Williams and Lewis, 2011)
Coccidioides immitis	Human body (Dickson, 1937)
Trychophyton rubrum	Human foot, hair, skin, nail (Kane, 1997)

Table.2 Showing year wise population of different fungus and their PDI, RD, RR and A

	RESULT							
YEAR	POPULATION	RANGE OF Aggressive Effective Population	PARASITIC DOMAIN INCIDENCE (PDI)	RISK DIFFERENCE(RD)	RISK RATIO (RR)	AGGRESIVITY	PEARSONS CORRELATION [BETWEEN PDI AND AGGRESIVITY]	DIFFERENTIAL EXTINCTION POINT (DEP)
2005	12000 [j.capelle & c.neema]	8075	67.292		-	5.607	we ar	we are considering
2006	13000 [knogge et.al]	9345	71.885	0.00064	1.08322	5.99		
2007	14500 [Barron et.al]	10000	68.966	0.00079	1.11449	5.747		differential
2008	16000 [Berger et.al]	12765	79.781	0.00065	1.104	6.648		extinction point as a
2009	16987 [voyles et.al]	14567	85.754	0.00036	1.06112	7.146	r = 0.999999926	hidden data, so we
2010	18742 [Bromenshenk et.al]	15678	83.652	0.00055	1.103	6.971		are ploting it as an
2011	19567 [Evens & Hughes et.al]	17456	89.211	0.00023	1.04501	7.434		unknown factor for
2012	22675 [Huger et.al]	19800	87.321	0.0007	1.15873	7.276		biodiversity loss
2013	23000 [Meirinho.P.A et.al]	21456	93.287	0.00006	1.01379	7.773		

(* PDI – Parasitic Domain Incidence. RD – Risk Difference. RR- Risk ratio. A- Aggessivity.)

Table.3 Showing Correlation & Descriptive analysis between PDI and Aggressivity with Anova analysis

T-TEST	CORRELATIONS
/testval=0	/VARIABLES=VAR00001 VAR00002
/MISSINĢ=ANALYSIS	/PRINT=TWOTAIL NOSIG
/VARIABLES=VAR00001 VAR00002	/STATISTICS DESCRIPTIVES XPROD
/CRITERIA=CI(.95).	/MISSING=PAIRWISE.

T-Test

Correlations

[DataSet0]

[DataSet0]

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
VAR00001	9	80.7943	9.38679	3.12893
VAR00002	9	6.7324	.78218	.26073

Descriptive Statistics							
	Std. Deviation	N					
VAR00001	80.7943	9.38679	9				
VAR00002	6.7324	.78218	9				

		VAR00001	VAR00002
AR00001	Pearson Correlation	1	1.000"
	Sig. (2-tailed)		.000
	Sum of Squares and Cross-products	704.894	58.737
	Covariance	88.112	7.342
	N	9	9
/AR00002	Pearson Correlation	1.000	1
	Sig. (2-tailed)	.000	
	Sum of Squares and Cross-products	58.737	4.894
	Covariance	7.342	.612
	N	9	9

One-Sample Test

		Test Value = 0								
				95% Confidence Interva Difference						
	t	ď	Siq. (2-tailed)	Mean Difference	Lower	Upper				
VAR00001	25.822	8	.000	80.79433	73.5790	88.0097				
VAR00002	25.822	8	.000	6.73244	6.1312	7.3337				

(VAR00001-PDI, VAR00002-Aggressivity)

Int.J.Curr.Microbiol.App.Sci (2015) 4(6): 131-151

Table.4 Showing Non-parametric Correlations between PDI & A

NONPAR CORR

/VARIABLES=VAR00001 VAR00002 /PRINT=BOTH TWOTAIL NOSIG /MISSING=PAIRWISE.

Nonparametric Correlations

[DataSet0]

NPAR TESTS

/WILCOXON=VAR00001 WITH VAR00002 (PAIRED) /MISSING ANALYSIS.

NPar Tests

		Correlations		1			1
				VAR	00001	VAF	200002
Kendall's tau_b	VAR00001	Correlation Coeffic	cier		1.000	1	1.000**
		Sig. (2-tailed)	1			1	
		N			9		g
	VAR00002	Correlation Coeffi	ent	1	.000**		1.000
		Sig. (2-tailed)		e.		×.	
		N			9		9
Spearman's rho	VAR00001	Correlation Coeff	ient		1.000		1.000**
		Sig. (2-tailed)				x.	
		N			9		9
	VAR00002	Correlation Coeffic	cia vt	1	.000**		1.000
		Sig. (2-tailed)				2	
		N			9		1

[DataSet0]

Wilcoxon Signed Ranks Test

	Ranks						
۱			Ν	Mean Rank	Sum of Ranks		
۱	VAR00002 - VAR00001	Negative Ranks	ga	5.00	45.00		
		Positive Ranks	0p	.00	.00		
I		Ties	00				
I		Total	9				

a. VAR00002 < VAR00001

b. VAR00002 > VAR00001

c. VAR00002 = VAR00001

Test Statistics^b

	VAR00002 - VAR00001
Z	-2.666ª
Asymp. Sig. (2-tailed)	.008

a. Based on positive ranks.

b. Wilcoxon Signed Ranks Test

Int.J.Curr.Microbiol.App.Sci (2015) 4(6): 131-151

Table.5 Showing Cluster analysis between PDI & A

Initial Cluster Centers

	Cluster				
	1	2			
VAR00001	67.29	93.29			
VAR00002	5.61	7.77			

Iteration History^a

	Change in Cluster				
Iteration	1	2			
1	4.705	5.461			
2	.000	.000			

a. Convergence achieved due to no or small change in cluster centers. The maximum absolute coordinate change for any center is .000. The current iteration is 2. The minimum distance between initial centers is 26.085.

Cluster Membership					
Case Number	Cluster	Distance			
1	1	4.705			
2	1	.096			
3	- t	3.025			
4	1	7.827			
5	2	2.098			
6	2	4.207			
7	2	1.371			
8	2	.526			
9	2	5.461			

Final Cluster Centers

	Cluster			
	1	2		
VAR00001	71.98	87.85		
VAR00002	6.00	7.32		

Distances between Final Cluster Centers

Cluster	1	2
1		15.919
2	15.919	

ANOVA

	Cluster		Error			
	Mean Square	df	Mean Square	df	F	Siq.
VAR00001	559.259	1	20.805	1	26.881	.001
VAR00002	3.884	1	.144	7	26.899	.001

The F tests should be used only for descriptive purposes because the clusters have been chosen to maximize the differences among cases in different clusters. The observed significance levels are not corrected for this and thus cannot be interpreted as tests of the hypothesis that the cluster means are equal.

Table.6 Showing Cluster analysis through Ward Linkage and Centroid Linkage

CLUSTER VAROOOO1 VAROOOO2

/METHOD WARD

/MEASURE=SEUCLID

/PRINT SCHEDULE

/PRINT DISTANCE

/PLOT DENDROGRAM VICICLE.

+ Cluster

[DataSet0]

Case Processing Summary^a

		Ca	ses			
Valid		Mis	sing	Total		
N	Percent	N	Percent	N	Percent	
9	100.0	0	Û	9	100.0	

a. Ward Linkage

Proximity Matrix

				Squared	Euclidean	Distance			
Case	1	2	3	4	5	6	1	8	9
1	.000	21,242	2,822	157.059	343.214	269.510	483,780	403,946	680.432
2	21.242	.000	8.580	62.780	193,685	139.425	302.275	239.924	461.225
3	2,822	8.580	.000	117.776	283.794	217.177	412,706	339.244	595.616
4	157.059	62,780	117,776	.000	35.925	15.089	89.543	57.246	183.678
5	343.214	193,685	283,794	35.925	.000	4,449	12.034	2.472	57.139
6	269.510	139.425	217.177	15.089	4,449	.000	31.117	13.555	93,476
1	483.780	302.275	412,706	89.543	12.034	31.117	.000	3.597	16.729
8	403.946	239.924	339,244	57.246	2.472	13.555	3.597	.000	35.840
9	680.432	461.225	595,616	183.678	57.139	93.476	16,729	35.840	.000

Ward Linkage

Agglomeration Schedule

	Cluster C	ombined		Stage Cluster First Appears		
Stage	Cluster 1	Cluster 2	Coefficients	Cluster 1	Cluster 2	Next Stage
1	5	8	1.236	0	0	1
2	1	3	2.647	0	0	
3	5	7	7.445	1	0	(
4	4	6	14.990	0	0	;
5	1	2	24.460	2	0	
6	5	9	50.379	3	0	
7	4	5	119.529	4	6	
8	1	4	709.789	5	7	

Centroid Linkage

Agglomeration Schedule

	Cluster Combined		Cluster Combined			Stage Cluster		
Stage	Cluster 1	Cluster 2	Coefficients	Cluster 1	Cluster 2	Next Stage		
1	5	8	.000	0	Q	3		
2	1	3	.001	0	0	4		
3	5	1	.008	1	0	6		
4	1	2	.018	2	0	8		
5	4	6	.019	0	0	6		
6	4	5	.047	5	3	1		
7	4	9	.096	6	0	8		
8	1	4	.434	4	1	0		

Table.7 Showing Cross Correlation between PDI & A

CCF

/VARIABLES=VAR00001 VAR00002 /NOLOG /MXCROSS 7.

VAR00001 with VAR00002

+ CCF

Number of Valid Cases

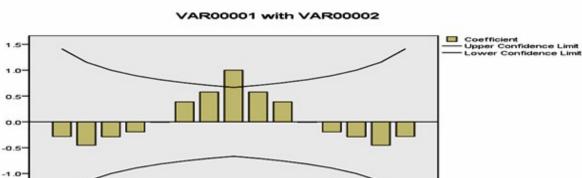
ß

-1.5

-7 -6 -5 -4 -3 -2

Number of Computable Zero-Order Correlations After Differencing

Cross Correlations


Series Pair:VAR00001 with

[DataSet0]				VAR000	002	
				Lag	Cross Correlation	Std. Error ^a
	Model Description			-7	283	.707
Model Name	1	NOD_1		-6	453	.577
Series Name 1	· ·	/AR00001		-5	289	.500
2		/AR00002		-4	194	.447
Transformation	· · · · · · · · · · · · · · · · · · ·	None	10	-3	007	.408
Non-Seasonal Differenci	ng		0	-3		10.000
Seasonal Differencing			0	-2	.387	.378
Length of Seasonal Perio	nd bd	No periodicity	Ť	-1	.578	.354
			28	0	1.000	.333
Range of Lags From			-7	1	.578	.354
То			7	2	.387	.378
Display and Plot				3	007	.408
Applying the model sp	ecifications from MOD_	1		4	194	.447
	-			5	289	.500
	Processing Summary	7 2 .310 .334 All lags 7 2 .387 .378 ns from MOD_1 4 007 .408 sing Summary 6 453 .577				
Series Length	lies Missing Maku		9	7	283	.707
Number of Excluded Cases Due to	User-Missing Value System-Missing Va	Second III D	0	a. B	ased on the assu	mption

 Based on the assumption that the series are not cross correlated and that one of the series is white noise.

ė

3

9

9

6 1 2 3 4 5

Lag Number

-1

Table.8 Showing Auto Correlation between PDI & A

ACF VARIABLES=VAR00001 VAR00002 /NOLOG /MXAUTO 16 /SERROR=MA /PACF.

ACF

[DataSet0]

		VAR00001	VAR00002
Series Length		9	9
Number of Missing	User-Missing	0	0
Values	System-Missing	0	0
Number of Valid Values		9	9
Number of Computable	First Lags	8	8

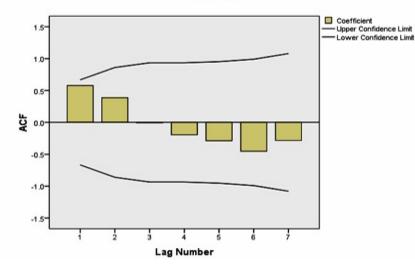
Case Processing Summary

VAR00001

Model Description					
Model Name	MOD_2				
Series Name 1	VAR00001				
2	VAR00002				
Transformation	None				
Non-Seasonal Differencing	0				
Seasonal Differencing	0				
Length of Seasonal Period	No periodicity				
Maximum Number of Lags	16				
Process Assumed for Calculating the Standard Errors of the Autocorrelations	MA with the order equal to the lag number minus one (the Bartlett approximation is used) ^a				
Display and Plot	All lags				

Applying the model specifications from MOD_2

a. Not applicable for calculating the standard errors of the partial autocorrelations.


			Box-Ljung Statistic			
Laq	Autocorrelatio n	Std. Error ^a	Value	df	Siq. ^b	
1	.578	.333	4.132	1	.042	
2	.387	.430	6.249	2	.044	
3	007	.468	6.250	3	.100	
4	194	.468	6.994	4	.136	
5	289	.476	9.055	5	.107	
6	453	.495	15.838	6	.015	
7	283	.540	19.800	7	.006	

Autocorrelations

a. The underlying process assumed is MA with the order equal to the lag number minus one. The Bartlett approximation is used.

b. Based on the asymptotic chi-square approximation.

VAR00001

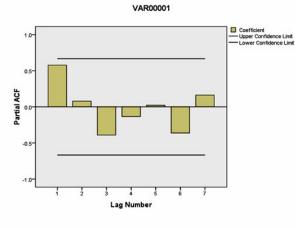
142

Table.9 Showing comparison between auto correlation and partial auto correlation of PDI & A

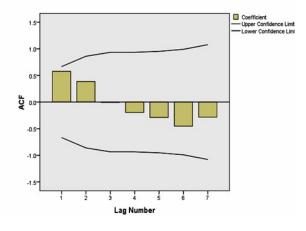
Partial Autocorrelations							
Series:VAR00001							
Partial Autocorrelatio Lag n Std. Error							
1	.333						
2	.080	.333					
3	391	.333					
4	135	.333					
5	.022	.333					
6	362	.333					
7	.163	.333					

VAR00002

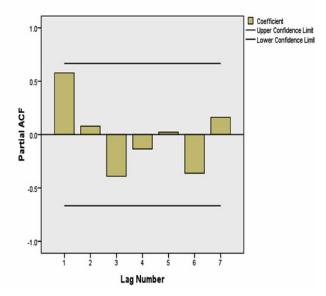
Autocorrelations


Series:VAR00002								
			Box-Ljung Statistic					
Laq	Autocorrelatio n	Std. Error ^a	Value	df	Siq. ^b			
1	.578	.333	4.133	1	.042			
2	.387	.430	6.250	2	.044			
3	007	.468	6.251	3	.100			
4	194	.468	6.996	4	.136			
5	289	.476	9.059	5	.107			
6	453	.495	15.839	6	.015			
7	283	.540	19.799	7	.006			

a. The underlying process assumed is MA with the order equal to the lag number minus one. The Bartlett approximation is used.


b. Based on the asymptotic chi-square approximation.

Partial Autocorrelations


Series:VAR00002						
Laq	Partial Autocorrelatio n	Std. Error				
1	.578	.333				
2	.080	.333				
3	391	.333				
4	135	.333				
5	.022	.333				
6	362	.333				
7	.162	.333				

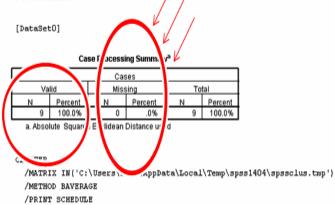
VAR00002

VAR00002

Int.J.Curr.Microbiol.App.Sci (2015) 4(6): 131-151

Table.10 Showing proximity analysis between RD & A

Frequency Table


VAR00001								
		Frequency	Percent	Valid Percent	Cumulative Percent			
Valid	•	1	11.1	11.1	11.1			
	0.00006	1	11.1	11.1	22.2			
	0.00023	1	11.1	11.1	33.3			
	0.00036	1	11.1	11.1	44.4			
	0.00055	1	11.1	11.1	55.6			
	0.00064	1	11.1	11.1	66.7			
	0.00065	1	11.1	11.1	77.8			
	0.0007	1	11.1	11.1	88.9			
	0.00079	1	11.1	11.1	100.0			
	Total	9	100.0	100.0				

VAR00002

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	5.61	1	11.1	11.1	11.1
	5.75	1	11.1	11.1	22.2
	5.99	1	11.1	11.1	33.3
	6.65	1	11.1	11.1	44.4
	6.97	1	11.1	11.1	55.6
	7.15	1	11.1	11.1	66.7
	7.28	1	11.1	11.1	77.8
	7.43	1	11.1	11.1	88.9
	7.77	1	11.1	11.1	100.0
	Total	9	100.0	100.0	

PROXIMITIES VAR00002 /MATRIX OUT('C:\Users\sidd\AppData\Local\Temp\spss1404\spssclus.tmp') /VIEW=CASE /MEASURE=ABSOLUTE SEUCLID /PRINT NONE /STANDARDIZE=VARIABLE NONE.

Proximities

/PRINT DISTANCE

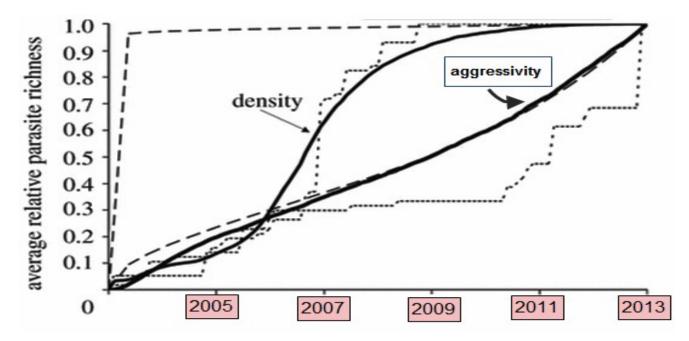
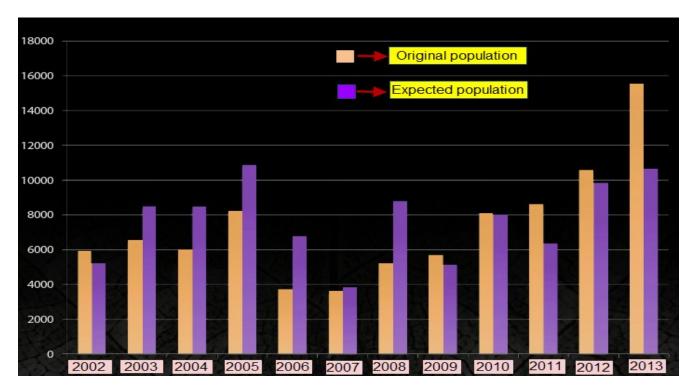
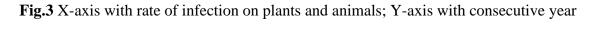
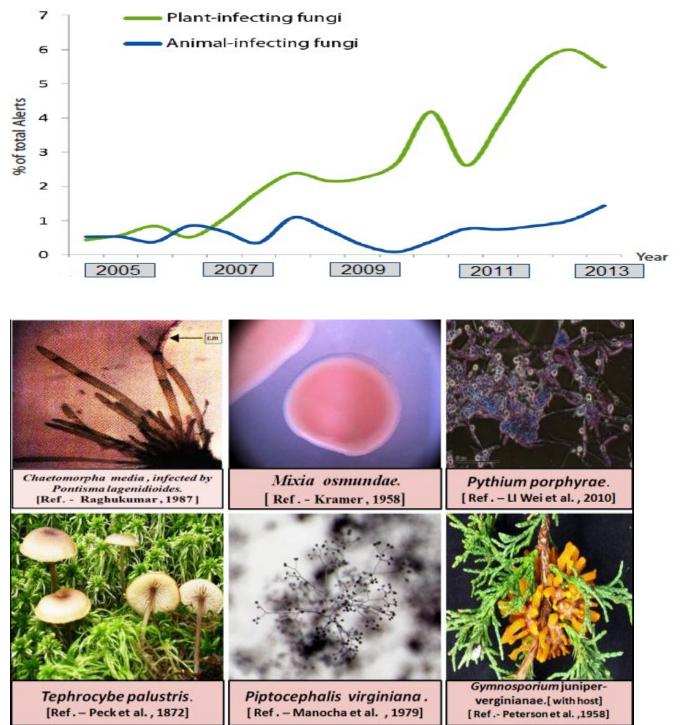
/PLOT DENDROGRAM HICICLE.

Proximity Matrix Absolute Squared Euclidean Distance 1:Case 1 2:Case 2 3:Case 3 4:Case 4 5:Case 5 6:Case 6 7:Case 7 8:Case 8 9:Case 9 Case 1:Case 1 .000 .147 .020 1.084 2.369 1.860 3.338 2.786 4.692 2:Case 2 .147 .000 .059 .433 1.336 .962 2.085 1.654 3.179 3:Case 3 .020 .059 .000 .812 1.957 1.498 2.846 2.338 4.105 4:Case 4 1.084 .433 .812 .000 .248 .104 .618 .394 1.266 5:Case 5 2.369 1.336 1.957 .248 .000 .031 .083 .017 .393 6:Case 6 1.860 .962 1.498 .104 .031 .000 .214 .093 .643 7:Case 7 3.338 2.085 2.846 .618 .083 .214 .000 .025 .115 8:Case 8 2.786 1.654 2.338 .394 .017 .093 .025 .000 .247 9:Case 9 4.692 3.179 4.105 1.266 .393 .643 .115 .247 .000

This is a dissimilarity matrix

Average Linkage (Between Groups)

	Agglomeration Schedule									
ſ		Cluster Combined			Stage Cluster First Appears					
l	Stage	Cluster 1	Cluster 2	Coefficients	Cluster 1	Cluster 2	Next Stage			
ſ	1	5	8	.017	0	0	3			
I	2	1	3	.020	0	0	4			
I	3	5	7	.054	1	0	6			
	4	1	2	.103	2	0	8			
	5	4	6	.104	0	0	7			
	6	5	9	.252	3	0	7			
I	7	4	5	.438	5	6	8			
l	8	1	4	2.185	4	7	0			

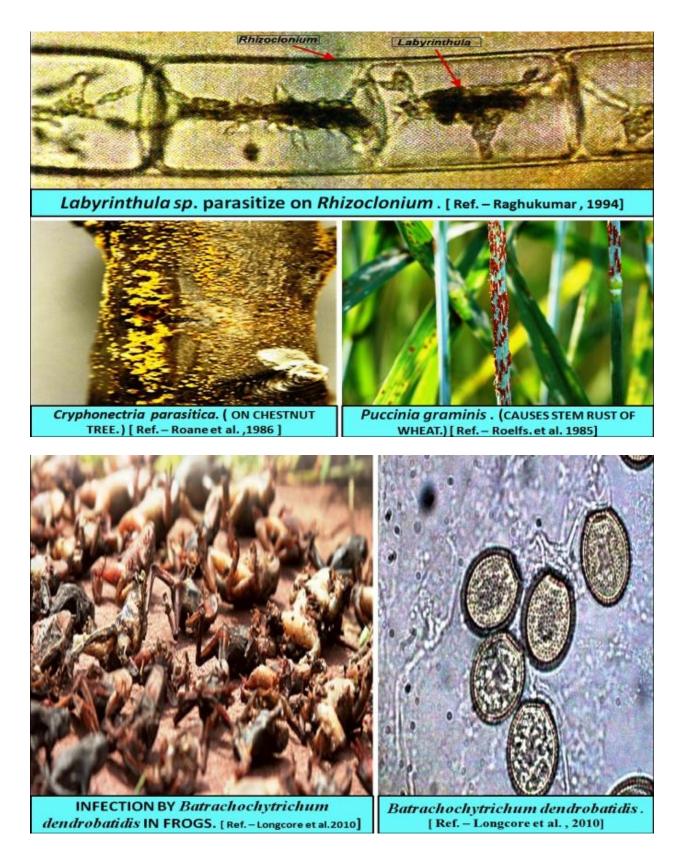
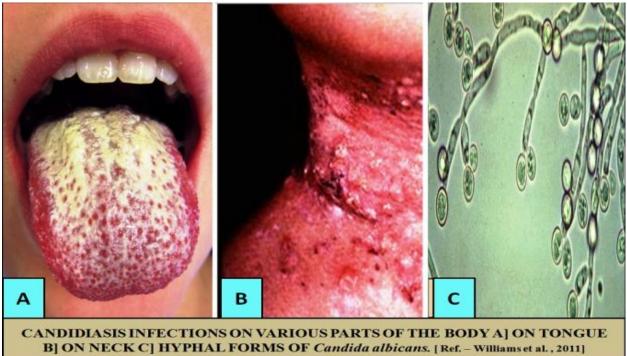

Fig.1 X-axis with the average relative parasite richness & Y-axis with consecutive year

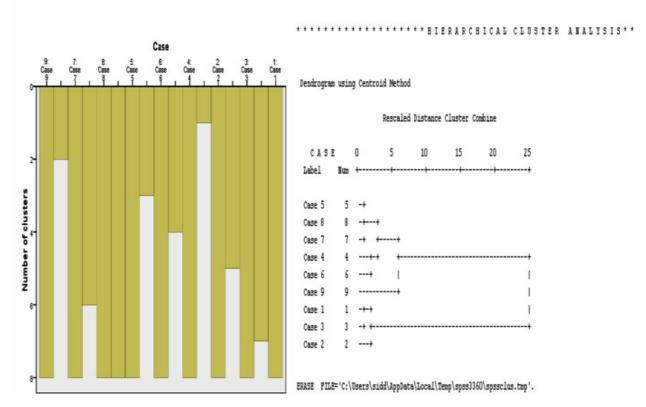
Fig.2 X-axis with two different variables i.e. Original Population (OP) & Expected Population (EP); Y-axis with consecutive year

DEVASTATING OUTBREAK OF Beauveria bassiana ON LEPIDOPTERON INSECTS. [Ref. – Bassi et al., 1835]

Pithomyces chartarum. (PARASITIZE ON HERBIVORES.) [Ref. – Menna et al., 2010]


HOST -*Camporotus leonardi* (Carpenter ant) PARASITE -*Ophiocordyceps unilateralis.* [Ref. – Wallace, 1859]

Microsporum canis . (PARASITIZE ON CARNIVORES)[Ref. – CNCM / www.provlab .ab.ca/mycol/tutorials/derm/ dermhome.htm]



A] Fonsecae pedrosoi INFECT OF LEFT LEG . B] SAME LEG AFTER DAILY TREATMENT WITH INTRACONAZOLE. [Ref.- Glenn Bulmer, From www. Medicalmycology.net.]

Fig.4 Showing the Dendrogram analysis of the data

Dendrogram

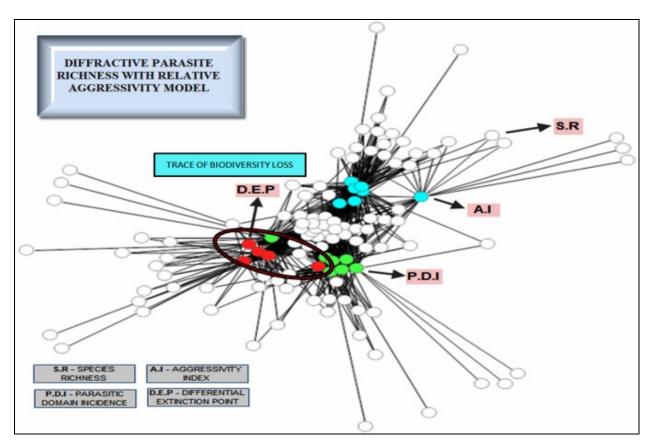


Fig.5 Exploration of 3d-diffractive model and trace of silent biodiversity loss

References

- Christensen, J.J. 1963. Corn smut caused by Ustilago maydis. Am. Phytopathol. Soc. Monogr., 2: 1–41.
- Denning, D.W., Pleuvry, A., Cole, D.C. 2013. Global burden of chronic Pulmonary aspergillosis complecating Sarcoidosis. *Eur. Resp. J.*, 41(3): 621–6.
- Di Menna, M.I., Smith, B.L., Miles, C.O. 2010. A history of facial eczema (Pithomycotoxicosis) research. *N.Z J. Agricult. Res.*, 52(4): 345–376.
- Dickson, E.C. 1937. Valley fever of the San Joaquin Vallen and fungus *Coccidioides* California West. *Med.*, 47: 151–155.
- Ingram, D.S., Williams, P.H. (Eds.) 1991. Phytophthora infestans: the cause of late blight of potato. *Adv. Plant*

Pathol., Vol. 7. Academic Press, San Diego.

- Jean Paul Latge, 1999. Aspergillus fumigatus and aspergillosis. Clin. Microbiol. Rev., 12(2): 310–350.
- Joshi, L.M., *et al.*, 1983. Karnal bunt: A minor disease that is now a threat to wheat. *Bot. Rev.*, 49: 309–330.
- Kane, J. 1997. Laboratory hand book of dermatophytes: clinical guide and laboratory hand book of dermatophytes and other filamentous fungi from skin, hair and nails. Star Pub., Belmont, CA.
- LI Wei, Zhang Tianyu, Tang Xuexi, Wang Bingyao, 2010. Oomycetes and fungi: important parasites on marine algae. *Acta Oceanol.*, 29(5): 74-81.
- Longcore, J.E., Pessier, A.P., Nichols, D.K. 1999. Batrachochytrium dendrobatidis gen. et sp. nov., a

chytrid pathogenic to amphibians. *Mycologia*, 91: 219–227.

- Manocha, M.S., Roya Golesorkhi, 1979. Host-parasite Relations in a Mycoparasite.V. Electron Microscopt of *Piptocephalis virginiana* Infection in Compatible and Incompatible Hosts. *Mycologia*, 71(3): 565–576.
- Molina, F. 1986. Petersenia pollagaster (Oomycete): an invasive pathogen of *Chondrus crispus* (Rhodophyceae).
 In: Moss, S.T. (Ed.) Biology of marine fungi. Cambridge University press, Cambridge. Pp. 165–75.
- Raghukumar, C. 1986a. Fungal parasite of the marine green algae *Cladophora* and *Rhizoclonium*. *Bot. Mar.* 29: 289–97.
- Raghukumar, C. 1986b. The occurance of *Chytridium polysiphoniae*, a fungal pathogen on the red alga *Centroceros clavulatum* (C. Agardh) Montage from Goa. *Indian J. Mar. Sci.*, 15: 42–4.
- Roane, M.K., Griffin, G.J., Elkins, J.R. 1986. Chestnut blight, other *Endothia* diseases, and the genus *Endothia*. APS Monograph Series. APS Press. St. Paul, Minnesota.
- Roelfs, A.P., Bushnell, W.R. (Eds). 1985. The cereal rusts. Vols.1 and 2. Academic press, Orlando, Florida.
- Rotem, J. 1994. The genus *Alternaria*. APS Press, St. Paul, Minnoesota.
- Smith, N., Denning, D.W. 2011. Underlying conditions in chronic pulmonary aspergillosis including chronic aspergilloma. *Eur. Resp. J.*, 37(4): 865–872.
- Van Den Boogert, P.H.J.F., Velvis, H. 1991. Population dynamics of the mycoparasite *Verticillium biguttatum* and it's host, *Rhizoctonia solani. Soil Biol. Bio-chem.*, 24: 157–164.

Williams, D., Lewis, M. 2011. Pathogenesis and treatment of oral candidosis. J. Oral Microbiol., 3.